Re-face stereospecificity of NADP dependent methylenetetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1 as determined by NMR spectroscopy

Christoph H. Hagemeier^{a,1}, Stefan Bartoschek^{a,b,c,1}, Christian Griesinger^{b,c}, Rudolf K. Thauer^{a,*}, Julia A. Vorholt^a

^a Max-Planck-Institut für terrestrische Mikrobiologie and Laboratorium für Mikrobiologie des Fachbereichs Biologie der Philipps-Universität, Karl-von-Frisch-Strasse, D-35043 Marburg, Germany ^b Institut für Organische Chemie der Universität Frankfurt, Marie-Curie-Str. 11, D-60439 Frankfurt/Main, Germany

Institut für Organische Chemie der Universität Frankfurt, Marie-Curie-Str. 11, D-60439 Frankfurt/Main, Germany Amax-Planck-Institut für biophysikalische Chemie, Am Faßberg 11, D-37077 Göttingen, Germany

Received 26 January 2001; accepted 28 February 2001

First published online 20 March 2001

Edited by Thomas L. James

Abstract MtdA catalyzes the dehydrogenation of N^5,N^{10} -methylenetetrahydromethanopterin (methylene- H_4MPT) with NADP⁺ as electron acceptor. In the reaction two prochiral centers are involved, C14a of methylene- H_4MPT and C4 of NADP⁺, between which a hydride is transferred. The two diastereotopic protons at C14a of methylene- H_4MPT and at C4 of NADPH can be seen separately in 1H -NMR spectra. This fact was used to determine the stereospecificity of the enzyme. With (14aR)-[14a- $^2H_1]$ -[14a- 13 C|methylene- H_4MPT as the substrate, it was found that the pro-R hydrogen of methylene- H_4MPT is transferred by MtdA into the pro-R position of NADPH. © 2001 Federation of European Biochemical Societies. Published by Elsevier Science B.V. All rights reserved.

Key words: Methylenetetrahydromethanopterin; NADPH; Stereospecificity; ¹H-Nuclear magnetic resonance; Methylobacterium extorquens AM1

1. Introduction

Recently in *Methylobacterium extorquens* AM1 a novel enzyme was found that catalyzes the dehydrogenation of N^5,N^{10} -methylenetetrahydromethanopterin (methylene-H₄MPT) to N^5,N^{10} -methenyltetrahydromethanopterin (methenyl-H₄MPT⁺) with NADP⁺ as electron acceptor ($\Delta G^{o'} = -13 \text{ kJ/mol}$) [1,2] (Fig. 1). The enzyme designated NADP dependent methylenetetrahydromethanopterin dehydrogenase (MtdA) also catalyzes the dehydrogenation of N^5,N^{10} -methylenetetrahydrofolate to N^5,N^{10} -methenyltetrahydrofolate albeit with a 20-fold lower catalytic efficiency. It is, however, strictly specific for NADP. The homotrimeric enzyme, which is devoid of a prosthetic group, exhibits a ternary complex catalytic mechanism [1].

*Corresponding author. Fax: (49)-6421-178209. E-mail: thauer@mailer.uni-marburg.de

Abbreviations: DQF-COSY, double-quantum filter correlated spectroscopy; HSQC, heteronuclear single-quantum correlation spectroscopy; MtdA, NADP⁺ dependent methylenetetrahydromethanopterin dehydrogenase; Hmd, hydrogen forming methylenetetrahydromethanopterin dehydrogenase; H₄MPT, tetrahydromethanopterin

In the MtdA catalyzed reaction, a hydride is transferred from C14a of methylene-H₄MPT to C4 of NADP⁺, which are both prochiral centers (Fig. 1). The C14a containing imidazolidine ring and the C4 containing pyridine ring thus have a Si-face and a Re-face with which they can bind to an enzyme and interact with one another. For hydrogen transfer to occur, either the pro-S or the pro-R hydrogen of methylene-H₄MPT must be in van der Waals contact with C4 of the pyridine ring, either from the Si-face or from the Re-face. From the stereochemistry of the hydride transfer the relative position of the two substrates within the active site of MtdA can therefore be deduced.

2. Materials and methods

 $^2\mathrm{H}_2$ was from Messer Griesheim. $^2\mathrm{H}_2\mathrm{O},~[^{13}\mathrm{C}]$ formaldehyde, NaB $^2\mathrm{H}_4$ and [1- $^2\mathrm{H}]$ glucose were from Aldrich, and NADP $^+$ and NADPH were from Biomol. Tetrahydromethanopterin (H $_4\mathrm{MPT})$ was isolated from Methanothermobacter marburgensis (DSMZ 2133, formerly Methanobacterium thermoautotrophicum strain Marburg [3]) [4]. Glucose-6-phosphate dehydrogenase from yeast was from Boehringer.

[14a-¹³C]Methylene-H₄MPT was prepared by spontaneous reaction of H₄MPT with [¹³C]formaldehyde [5]. Methenyl-H₄MPT⁺ was generated from methylene-H₄MPT at pH 6.0 by dehydrogenation. The reaction was catalyzed by hydrogen forming methylene-H₄MPT dehydrogenase (Hmd) [6]. Hmd was purified from *M. marburgensis* [7]. NADP⁺ dependent methylene-H₄MPT dehydrogenase from *M. extorquens* AM1 (DSMZ 1338) was heterologously overproduced in *Escherichia coli* and purified as described in [2].

2.1. Preparation of ²H stereospecifically labelled methylene-H₄MPT and NADPH

(14a*R*)-[14a-²H₁]-[14a-¹³C]Methylene-H₄MPT was generated by reduction of methenyl-H₄MPT⁺ with ²H₂ in ²H₂O containing 100 mM potassium phosphate p²H 7.5 at room temperature as catalyzed by *Re*-face specific Hmd [8,9]. After completion of the reaction the enzyme was removed by ultrafiltration using a 30 kDa microconcentrator (Millipore). Since Hmd and methylene-H₄MPT are oxygen sensitive, all steps were performed under strictly anaerobic conditions. (4*S*)-[4-²H₁]NADPH was synthesized by reduction of NADP⁺ with [1-²H]glucose-6-phosphate as catalyzed by *Si*-face specific glucose-6-phosphate dehydrogenase from yeast [10]. After completion of the reaction the enzyme was removed by ultrafiltration. (14a*S*)-[14a-²H₁]-[14a-¹³C]Methylene-H₄MPT was generated by reduction of methenyl-H₄MPT⁺ with NaB²H₄ [9,11].

2.2. Assay for the determination of the stereospecificity of MtdA

The 1 ml assay mixture in ²H₂O contained 100 mM potassium

¹ These authors contributed equally to this work.

phosphate p²H 7.5, 2 mM NADP⁺, 4 mM (14aR)-[14a- $^{2}H_{1}]$ -[14a- ^{13}C]methylene- $H_{4}MPT$ or 4 mM (14aS)-[14a- $^{2}H_{1}]$ -[14a- ^{13}C]methylene- $H_{4}MPT$. The reaction was started with 5 U MtdA at room temperature and completed after 5 min. Before and after the reaction the assay was analyzed by ^{1}H -nuclear magnetic resonance (NMR) spectroscopy.

2.3. Substrate and product analysis via ¹H-NMR spectroscopy

NMR spectra of the assays were recorded at 279 K (6°C) and at a ¹H frequency of 600.13 MHz on a DRX600 spectrometer (Bruker) and processed with the program XWINNMR 2.6.

One-dimensional 1H spectra were recorded with 16384 complex points over a spectral width of 6009.6 Hz. After 16 dummy scans to allow for preequilibration, 128 scans were signal averaged. The recycle delay was 2 s and a low power presaturation pulse was applied during the recycle delay. An exponential window function with 0.5 Hz line broadening was applied and the spectra were referenced to the $\rm H_2O$ signal at 4.95 ppm and 279 K.

Two-dimensional 13 C, 1 H-heteronuclear single-quantum correlation (HSQC) spectra were collected using the standard HSQC pulse sequence [8,12–14] with 2048 complex points in t_2 over a spectral width of 7788.2 Hz. For each spectrum 512 t_1 experiments with 32 scans were acquired with a recycle delay of 2 s (measurement time 22 h). Spectra were zero filled to 4096 points in ω_1 and 2048 points in ω_2 to obtain a resolution of 1.5 Hz in ω_1 and 1.0 Hz in ω_2 . A 90° shifted squared sinebell window function was applied for apodization prior to Fourier transformation in both dimensions. Automated baseline correction was applied in both dimensions.

Two-dimensional double-quantum filter correlated spectroscopy (DQF-COSY) spectra in 2H_2O were collected using the standard pulse sequences [15–17] with 2048 complex points in t_2 over a spectral width of 6009.6 Hz. A total of 512 t_1 experiments with 32 scans were acquired with a recycle delay of 2 s (measurement time 22 h). Spectra were zero filled to 4096 points in ω_1 and 2048 points in ω_2 resulting in a resolution of 2.9 Hz in ω_1 and 1.5 Hz in ω_2 . A 90° shifted squared sinebell window function was applied for apodization prior to Fourier transformation in both dimensions. Automated baseline correction was applied in both dimensions.

3. Results

3.1. Stereospecificity of MtdA at C14a of methylene-H₄MPT

The diastereotopic protons at C14a of methylene-H₄MPT exhibit different ¹H-NMR resonances, the chemical shift of the *pro-S* proton being 3.4 ppm and of the *pro-R* proton being 4.8 ppm [8] (Fig. 2, trace A). The resonance of the C14a proton of methenyl-H₄MPT⁺ is at 9.0 ppm (Fig. 2, trace B). In ¹³C, ¹H-HSQC spectra of [14a-¹³C]methylene-H₄MPT only the resonances at 3.4 and 4.8 ppm are observed and of

Fig. 1. Reaction catalyzed by NADP dependent MtdA. For the complete structure of tetrahydromethan opterin see [1]. H_4MPT is structurally and functionally analogous to tetrahydrofolate [25].

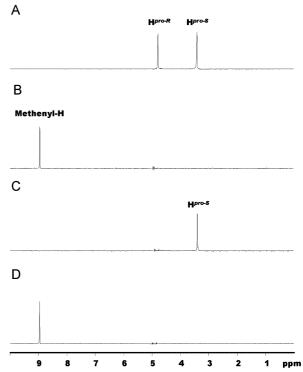


Fig. 2. Traces through 13 C, 1 H-HSQC spectra along the 13 C resonance of C14a of [14a- 13 C]methylene-H₄MPT and [14a- 13 C]methenyl-H₄MPT⁺ in 2 H₂O at pH 7.5 and 279 K. A: Methylene-H₄MPT (2 mM) showing the *pro-R* and *pro-S* protons at C14a. B: Methenyl-H₄MPT⁺ (2 mM) showing the 1 H at C14a. C: (14a*R*)-[14a- 2 H₁]-[14a- 13 C]Methylene-H₄MPT (4 mM) showing the *pro-S* proton at C14a. The chemical shift of the *pro-S* proton changed slightly due to the geminal isotope effect of the C14a- 2 H^{*pro-R*}. D: [C14- 1 H]Methenyl-H₄MPT⁺ obtained by oxidation of (14a*R*)-[14a- 2 H₁]-[14a- 13 C]methylene-H₄MPT with NADP⁺ at pH 7.5 as catalyzed by MtdA from *M. extorquens*. The observation of the C14- 1 H proton in the methenyl-H₄MPT⁺ spectrum proves the *pro-R* specificity of the reaction.

 $[14a-^{13}C]$ methenyl- H_4MPT^+ only at 9.0 ppm. These differences in chemical shifts were exploited to determine the stereospecificity of MtdA at C14a of methylene- H_4MPT .

In Fig. 2, trace C, the ¹³C, ¹H-HSQC spectrum of (14aR)-[14a-2H₁]-[14a-13C]methylene-H₄MPT shows the resonance of the pro-S proton of C14a at 3.4 ppm, and Fig. 2, trace D, depicts the spectrum of the compound after oxidation to methenyl-H₄MPT⁺ with NADP⁺ in the presence of MtdA. The spectrum of the product (trace D) is identical to that of methenyl-H₄MPT⁺ with a ¹H at C14a (trace B). The pro-S ¹H of (14aR)-[14a- $^2H_1]$ -[14a- $^{13}C]$ methylene- H_4MPT was thus retained in the product indicating that the ²H⁻ in the pro-R position rather than the ¹H⁻ in the *pro-S* position of the labelled substrate was transferred to NADP⁺. When (14aS)- $[14a-^2H_1]$ - $[14a-^{13}C]$ methylene- H_4MPT rather than (14aR)-[14a-2H₁]-[14a¹³C]methylene-H₄MPT was used to reduce NADP⁺, methenyl-H₄MPT⁺ with ²H₁ at C14a was formed (not shown). The results indicate that MtdA is Re-face specific with respect to C14a of methylene-H₄MPT.

3.2. Stereospecificity of MtdA at C4 of NADP

The one-dimensional ¹H-NMR spectrum of the protons at C4 of NADPH shows two resonances which are both split by the geminal coupling between the two C4 protons (Fig. 3, trace A) [18]. These resonances were overlapped in the one-

dimensional spectrum by the resonances of other protons when, in addition to NADPH, methylene-H₄MPT and the enzyme MtdA were also present in the solution. In the two-dimensional ¹H DQF-COSY NMR spectrum (Fig. 3), however, the C4, C5 proton cross peak was well resolved.

In Fig. 3C the ¹H DQF-COSY NMR spectrum of (4*S*)-[4-²H₁]NADPH is shown. The resonances of the *pro-R* hydrogen are shifted to lower ppm values due to the ²H isotope effect exerted by the ²H^{pro-S}. The geminal proton deuterium coupling is too small to be observed. In Fig. 3D the spectrum of NADP+ after reduction to NADPH with (14a*R*)-[14a-²H₁]-[14a-¹³C]methylene-H₄MPT in the presence of MtdA indicates that (4*R*)-[4-²H₁]-[NADPH] was formed. The negative deuterium isotope effect and the removal of the splitting of the H^{pro-S} resonance is consistent with the presence of ²H in the *pro-R* position. When (14a*S*)-[14a-²H₁]-[14a-¹³C]-methylene-H₄MPT rather than (14a*R*)-[14a-²H₁]-[14a-¹³C]methylene-H₄MPT was used to reduce NADP+, NADPH containing two protons at C4 was formed (not shown). The results

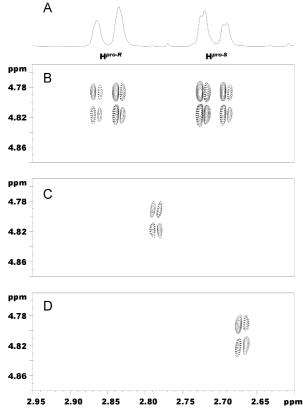


Fig. 3. ¹H-NMR spectra of the protons at C4 of NADPH in ²H₂O at pH 7.5 and 279 K. One-dimensional ¹H-NMR spectrum of the protons at C4 (A) and cross peaks between the C4 and the C5 proton resonances in a ¹H DQF-COSY NMR spectrum of a sample containing 4 mM NADPH (B). C: Cross peak between the C4 and the C5 protons in a two-dimensional ¹H DQF-COSY NMR spectrum of 2 mM (4S)-[4-²H₁]NADPH. The chemical shift of the C4 H^{pro-R} changed due to the deuterium isotope effect by C4 ²H^{pro-S}. D: Cross peak between the C4 and the C5 protons of a DQF-COSY spectrum of 2 mM NADPH generated by reduction of 2 mM NADP+ with 4 mM (14aR)-[14a-²H₁]-[14a-¹³C]methylene-H₄MPT as catalyzed by MtdA from *M. extorquens* which was shown to be *Re*-face specific with respect to C14a of methenyl-H₄MPT+ (see Fig. 2). The chemical shift of C4 ¹H^{pro-S} proton changed due to the deuterium isotope effect by the C4 ²H^{pro-R}. Negative contours are plotted in dashed lines.

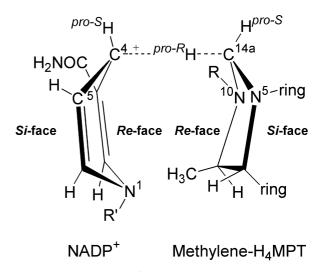


Fig. 4. Reduction of NADP⁺ with methylene-H₄MPT as catalyzed by *Re*-face stereospecific MtdA (see also Fig. 1). The hydride transfer proceeds stereoselectively from the *pro-R* position of methylene-H₄MPT into the *pro-R* position of NADP⁺. The conformations of NADP⁺ and methylene-H₄MPT are shown for the transition state as proposed by [24,26].

thus indicate that the ²H in the *pro-R* position of methylene-H₄MPT was transferred into the *pro-R* position of NADPH. MtdA is thus *Re*-face specific with respect to C4 of NADP.

4. Discussion

In Section 3 it was shown that MtdA is *Re*-face specific with respect to both C14a of methylene-H₄MPT and C4 of NADP⁺. The *pro-R* hydrogen of methylene-H₄MPT is thus transferred into the *pro-R* position of NADP⁺ as shown in Fig. 4.

The crystal structure of MtdA with NADP⁺ bound has recently been determined to 1.9 Å resolution [19]. The pyridine nucleotide was located in a wide cleft with its *Si*-face bound to the protein. From the stereochemistry of hydride transfer we can now predict that methylene-H₄MPT has to bind on top of NADP⁺ with its *Re*-face facing the *Re*-face of NADP⁺, and that consecutive binding of the two substrates to the enzyme occurs with NADP⁺ binding first.

MtdA from *M. extorquens* AM1 has the same stereospecificity as NAD(P) dependent methylenetetrahydrofolate dehydrogenase from Eucarya [11,20–23]. This was not per se predictable since MtdA and methylenetetrahydrofolate dehydrogenases do not show sequence similarities and are therefore considered to have evolved independently [1,24].

Acknowledgements: This work was supported by the Max-Planck-Gesellschaft, by the Peter und Traudl Engelhorn-Stiftung, by the Deutsche Forschungsgemeinschaft and by the Fonds der Chemischen Industrie. We would like to thank Reinhard Böcher and Gerrit Buurman, MPI Marburg, for the preparation of H_4MPT and Hmd.

References

- Vorholt, J.A., Chistoserdova, L., Lidstrom, M.E. and Thauer, R.K. (1998) J. Bacteriol. 180, 5351–5356.
- [2] Hagemeier, C.H., Chistoserdova, L., Lidstrom, M.E., Thauer, R.K. and Vorholt, J.A. (2000) Eur. J. Biochem. 267, 3762–3769.

- [3] Wasserfallen, A., Nölling, J., Pfister, P., Reeve, J. and de Macario, E.C. (2000) Int. J. Syst. Evol. Microbiol. 50, 43–53.
- [4] Breitung, J., Börner, G., Scholz, S., Linder, D., Stetter, K.O. and Thauer, R.K. (1992) Eur. J. Biochem. 210, 971–981.
- [5] Escalante-Semerena, J.C., Rinehart Jr., K.L. and Wolfe, R.S. (1984) J. Biol. Chem. 259, 9447–9455.
- [6] Zirngibl, C., Hedderich, R. and Thauer, R.K. (1990) FEBS Lett. 261, 112–116.
- [7] Zirngibl, C., van Dongen, W., Schwörer, B., von Bünau, R., Richter, M., Klein, A. and Thauer, R.K. (1992) Eur. J. Biochem. 208, 511–520.
- [8] Schleucher, J., Griesinger, C., Schwörer, B. and Thauer, R.K. (1994) Biochemistry 33, 3986–3993.
- [9] Geierstanger, B.H., Prasch, T., Griesinger, C., Hartmann, G., Buurman, G. and Thauer, R.K. (1998) Angew. Chem. Int. Ed. Engl. 37, 3300–3303.
- [10] You, K.-S. (1982) in: (Purich, D.L., Ed.), Vol. 87, pp. 101–126, Academic Press, New York.
- [11] Slieker, L.J. and Benkovic, S.J. (1984) J. Am. Chem. Soc. 106, 1833–1838
- [12] Bodenhausen, G. and Ruben, D.J. (1980) Chem. Phys. Lett. 69, 185–189
- [13] Palmer, A.G., Cavanagh, J., Wright, P.E. and Rance, M. (1991)
 J. Magn. Reson. 93, 151–170.
- [14] Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc. 114, 10663–10665.

- [15] Aue, W.P., Bartholdi, E. and Ernst, R.R. (1976) J. Chem. Phys. 64, 2229–2246.
- [16] Piantini, U., Sorensen, O.W. and Ernst, R.R. (1982) J. Am. Chem. Soc. 104, 6800–6801.
- [17] Rance, M., Sorensen, O.W., Bodenhausen, G., Wagner, G., Ernst, R.R. and Wüthrich, K. (1983) Biochem. Biophys. Res. Commun. 117, 479–485.
- [18] Mostad, S.B., Helming, H.L., Groom, C. and Glasfeld, A. (1997) Biochem. Biophys. Res. Commun. 233, 681–686.
- [19] Hagemeier, C.H., Ermler, U., Warkentin, E. and Vorholt, J.A. (2001) Biospectrum (in press).
- [20] Ramasastri, B.V. and Blakely, R.L. (1964) J. Biol. Chem. 239, 112-114.
- [21] Green, J.M., MacKenzie, R.E. and Matthews, R.G. (1988) Biochemistry 27, 8014–8022.
- [22] Allaire, M., Li, Y.G., MacKenzie, R.E. and Cygler, M. (1998) Structure 6, 173–182.
- [23] Shen, B.W., Dyer, D.H., Huang, J.Y., D'Ari, L., Rabinowitz, J. and Stoddard, B.L. (1999) Protein Sci. 8, 1342–1349.
- [24] Bartoschek, S., Buurman, G., Thauer, R.K., Geierstanger, B.H., Weyrauch, J.P., Griesinger, C., Nilges, M., Hutter, M. and Helms, V. (2001) ChemBioChem (in press).
- [25] Maden, B.E.H. (2000) Biochem. J. 350, 609-629.
- [26] Almarsson, Ö. and Bruice, T.C. (1993) J. Am. Chem. Soc. 115, 2125–2138.